The ROCK inhibitor Y-27632 is a selective and cell permeable inhibitor of the Rho-associated protein kinase (ROCK) (Ki values are 0.14, 26 ,25 and >250 µM at p160ROCK, PKC, PKA and MLCK respectively).
Y-27632 has many biological actions and is an important small molecule modulator of stem cells. It diminishes hESC and hiPSC dissociation-induced apoptosis, enhances survival and colony formation of dissociated hESC without affecting pluripotency or self-renewal. Y-27632 also improves hESC and iPSCs postthaw viability and survival rate during cryopreservation. It is frequently used as a 3D growth matrix component and for production of organoids (e.g. brain organoids). Additionally, Y-27632 inhibits smooth muscle contractility and shows antihypertensive effect.
Â
Background
Rho kinase (Rho-associated coiled coil protein kinase or ROCK) is a major downstream effector for the small GTP-binding protein Rho [1]. Rho kinase is involved in various biological processes including cell mitosis adhesion, cytoskeletal adjustments, muscle cell contraction, tumor cell invasion and a series of cell biological phenomena [2]. Through a series of cascading effects, Rho kinase influences actin and microtubule regulation of apoptosis and thus plays a key role in early embryonic development [3].The Rho kinase signalling pathway is highly activated in many pathological conditions [4].
Rock inhibitor Y-27632 is a Rho kinase inhibitor which selectively inhibits p160ROCK (ROCK1) with a Ki value of 140 nM and binds to the Rho kinase ATP binding pocket in an ATP-competitive manner [5].
Â
Uses
Y-27632 has been shown to have a diverse range of actions and has been used in a variety of biological systems. It is the most commonly used of the ROCK inhibitors in stem cell research and is used as a multifunctional reagent in many stem cell related processes [6]. Y-27632 demonstrates many positive effects across various cell types, in particular human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) [7] and has greatly improved a number of practical stem cell procedures [8]. For example it has been shown that Y-27632 increases cell adhesion and proliferation and increases post-thaw cell survival and post-passaging cell viability [9,10].
Â
Cellular dissociation
Cell dissociation is one of the most common manipulations in stem cell research. During cellular dissociation both hESC and hIPSCs are vulnerable to dissociation-induced apoptosis or anoikis (a form of apoptosis induced by inappropriate cell-cell or cell-ECM interactions) [3,11]. Y-27632 is of particular interest as it allows hPSCs to escape this dissociation-induced apoptosis. Y-27632 prevents apoptosis of dissociated hPSCs and increases their survival rate and plating efficiency [11].
Â
Cryopreservation
Cryopreservation is also an important part of stem cell research. Y-27632 improves the recovery of cryopreserved hPSCs and has greatly helped simplify the cryopreservation procedure. The slow-freezing and rapid-thawing procedure which uses DMSO as a cryoprotectant is commonly used in stem cell cryopreservation, however this method is not suitable for hPSCs, therefore vitrification (fast freezing, slow thawing) is used [12]. Vitrified hPSCs do however still suffer from high levels of cell death and do not passage well as single cells [11]. The addition of Y-27632 to freezing and post-thawing medium enhances colony formation efficiency and treatment with Y-27632 during cryopreservation also increases survival rate and cell adhesion of freeze-thawed dissociated hES [12].
 |