Hello Bio, Inc. 304 Wall St., Princeton, NJ 08540 USA

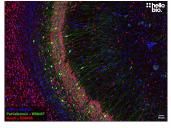
T. 609-683-7500 F. 609-228-4994

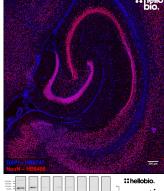
customercare-usa@hellobio.com

DATASHEET

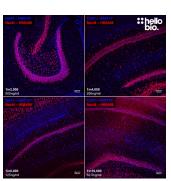
Anti-NeuN antibody ValidAb™

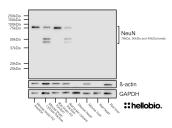
Product overview

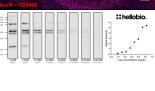

Name Anti-NeuN antibody ValidAbTM

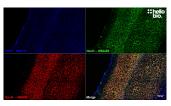

Cat NoHB6498Alternative namesFox-3HostRabbitClonalityPolyclonalTargetNeuN

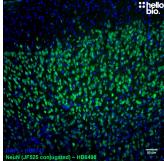
Description Antibody to NeuN - marker for mature neurones expressed in the nucleus. Part of the ValidAb™ range

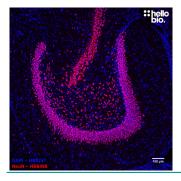

of highly validated, data-rich antibodies.


Validation data









Product information

Epitope Amino acids 5-24 of human NeuN

Isotype **IgG**

Purification Immunogen affinity purification

Concentration 1mg/ml

Formulation 50% PBS, 50% glycerol + 5mM sodium azide

Predicted species reactivity Mouse, Rat, Human Tested species reactivity Mouse, Rat

Tested applications

Applications WB, IHC(IF)

Western blot optimal 0.5μg/ml (1:2000 dilution) as tested in a rat brain cytosol preparation

concentration

IHC(IF) optimal concentration 0.5µg/ml (1:2000 dilution) as tested in rat brain sections

NeuN is highly expressed in the neurons of the CNS and PNS. It is also expressed in SH-SY5Y cells. Positive control

Negative control Any tissue not of neural origin. Most cell lines are NeuN negative.

Open data link Please follow this link to OSF

Target information

Other names FOX3, RNA binding protein fox-1 homolog 3, Fox-1 homolog C, RBFOX3, RFOX3

UniProt ID A6NFN3 Gene name RBFOX3

NCBI full gene name RNA binding fox-1 homolog 3

Entrez gene ID 146713

Amino acids Dependent on isoform

NeuN binds primarily to FOX3 which has two isoforms. Isoform 1 is described as the canonical Isoforms

> sequence with 312 amino acids (33.8kDa) while isoform 2 has a 13 residue insert at position 312 leading to a total length of 325 amino acids (35.1kDa). NeuN antibodies also bind to synapsin-1 in western blot experiments (but not in IHC or ICC) which has two isoforms. Isoform 1 is 705aa long

(74.1kDa) while isoform 2 is shorter at 669aa (70.0kDa).

NeuN is expressed only within neurones. While the vast majority of neurones express NeuN some cell **Expression**

types such as Purkinje cells, stellate and golgi cells do not show immunoreactivity.

Subcellular expression Expression is primarily localised to the nucleus however some FOX3 isoforms can localise to the

Processing None

Post translational Phosphorylation has been reported (see Lind et al., 2004. J Neurosci Res. 79: 295-302) which is

modifications directly related to immunoreactivity whereby dephosphorylation abolished staining. Mouse FOX3 shows 95.02% identity to human FOX3 wheras rat FOX3 shows no similarity due to a

Homology (compared to

human)

large 47 residue insertion at amino acid 252 in rats.

RNA-binding protein fox-1 homolog 1 (40-44kDa) shows 67.3% identity while RNA-binding protein Similar proteins

fox-1 homolog 2 (37-47kDa) shows 56.5% identity

Storage & Handling

Storage instructions

Important

This product is for RESEARCH USE ONLY and is not intended for therapeutic or diagnostic use. Not

for human or veterinary use

References

NeuN: a useful neuronal marker for diagnostic histopathology.

Wolf HK et al (1996) The journal of histochemistry and cytochemistry: official journal of the Histochemistry Society 44

PubMedID 8813082

NeuN As a Neuronal Nuclear Antigen and Neuron Differentiation Marker.

Gusel'nikova VV et al (2015) Acta naturae 7 **PubMedID** 26085943

Identification of neuronal nuclei (NeuN) as Fox-3, a new member of the Fox-1 gene family of splicing factors.

Kim KK et al (2009) The Journal of biological chemistry 284

PubMedID 19713214

Characterization of the neuronal marker NeuN as a multiply phosphorylated antigen with discrete subcellular localization.

Lind D et al (2005) Journal of neuroscience research 79

PubMedID 15605376

Novel Insights into NeuN: from Neuronal Marker to Splicing Regulator.

Duan W et al (2016) Molecular neurobiology 53 **PubMedID** 25680637