Hello Bio, Inc. 304 Wall St., Princeton, NJ 08540 USA

T. 609-683-7500 F. 609-228-4994

customercare-usa@hellobio.com

DATASHEET

UBP709

Product overview

NameUBP709Cat NoHB9204Alternative namesCompound 19c

Biological action PAM Purity >98%

Description NMDAR pan-PAM that potentiates all GluN2 subunits. Enhances LTD and decreases LTP.

Images

Biological Data

Biological description

NMDAR pan-PAM that potentiates all GluN2 subunits. First reported NMDAR PAM to enhance LTD and decrease LTP: in P14 hippocampal slices, the pan-PAM UBP709 potentiates the induction of LTD and reduces induction of LTP in a concentration-dependent manner. UBP709 also permits induction of LTD by 10 Hz stimulation, dependent on co-activation of GluN2B containing NMDARs and mGluRs.

Solubility & Handling

Solubility overview Storage instructions Storage of solutions

Shipping Conditions

Important

Soluble in DMSO (100 mM)

Room temperature

Prepare and use solutions on the same day if possible. Store solutions at -20°C for up to one month if storage is required. Equilibrate to RT and ensure the solution is precipitate free before use.

Stable for ambient temperature shipping. Follow storage instructions on receipt.

This product is for RESEARCH USE ONLY and is not intended for therapeutic or diagnostic use. Not

for human or veterinary use

Chemical Data

Chemical name Molecular Weight Chemical structure 9-butylphenanthrene-3-carboxylic acid

Molecular Formula PubChem identifier SMILES C₁₉H₁₈O₂ 88563705

CCCCC1 = CC2 = C(C = C(C = C2)C(=O)O)C3 = CC = CC = C31

InChi InChi=1S/C19H18O2/c1-2-3-6-13-11-14-9-10-15(19(20)21)12-18(14)17-8-5-4-7-16(13)17/h4-5,7-12

H,2-3,6H2,1H3,(H,20,21)

InChiKey RPHNFYJPUJYHFP-UHFFFAOYSA-N

Appearance White solid

References

Differential regulation of STP, LTP and LTD by structurally diverse NMDA receptor subunit-specific positive allosteric modulators

France et al (2022) Neuropharmacology 202:108840

PubMedID 34678377

Synthesis of a Series of Novel 3,9-Disubstituted Phenanthrenes as Analogues of Known NMDA Receptor Allosteric Modulators

Irvine et al (2015) Synthesis (Stuttg).

PubMedID 26568642