Hello Bio, Inc. 304 Wall St., Princeton, NJ 08540 USA

T. 609-683-7500 F. 609-228-4994

customercare-usa@hellobio.com

DATASHEET

Recombinant human proBDNF protein

Product overview

Name Recombinant human proBDNF protein

Cat No HB9577

Biological descriptionThe pre-BDNF precursor, pro-BDNF is an important regulator of neurodegeneration, hippocampal long-

term depression, and synaptic plasticity.

Species of origin human

Alternative names Recombinant Human Precursor Brain-Derived Neurotrophic Factor, proBDNF, Precursor Form Brain-

derived Neurotrophic Factor.

Purity >95%

Description BDNF precursor

Solubility & Handling

Storage instructions -20°C

Solubility overview To make a stock solution, reconstitute in sterile $18M\Omega$ cm water at a concentration > 100μ g/ml, which

can then be diluted to make a working solution

Solutions should be made in sterile deionized water (not less than 100 μg/ml). This solution can

then be further diluted with other aqueous solutions.

• Following reconstitution, solutions may be stored at 4°C and are useable for around 2-7 days

and for future use store at -18°C.

• Freeze-thaw cycles should be prevented.

Important This product is for RESEARCH USE ONLY and is not intended for therapeutic or diagnostic use. Not

for human or veterinary use

Chemical Data

UniProt ID P23560 Source E. Coli.

Appearance White lyophilized powder (sterile filtered & freeze-dried)

Formulation Lyophilized from a solution (0.5mg/ml) in phosphate buffer (20mM, pH 8.0) and NaCl (0.5M)

References

Pro-Brain-Derived Neurotrophic Factor (proBDNF)-Mediated p75NTR Activation Promotes Depolarizing Actions of GABA and Increases Susceptibility to Epileptic Seizures

Riffault B *et al* (2018) Cereb Cortex 28(2) **PubMedID**27913431

Precursor of brain-derived neurotrophic factor (proBDNF) forms a complex with Huntingtin-associated protein-1 (HAP1) and sortilin that modulates proBDNF trafficking, degradation, and processing

Yang M *et al* (2011) J Biol Chem 286(18) **PubMedID**21357693

proBDNF is modified by advanced glycation end products in Alzheimer's disease and causes neuronal apoptosis by inducing p75 neurotrophin receptor processing

Fleitas C et al (2018) Mol Brain 11(1)

PubMedID

30428894